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The jamming elasticity of emulsions stabilized by
ionic surfactants

Frank Scheffold,*c James N. Wilking,†a Jakub Haberko,‡c Frédéric Cardinauxc

and Thomas G. Mason*ab
Oil-in-water emulsions composed of colloidal-scale droplets are

often stabilized using ionic surfactants that provide a repulsive inter-

action between neighboring droplet interfaces, thereby inhibiting

coalescence. If the droplet volume fraction is raised rapidly by applying

an osmotic pressure, the droplets remain disordered, undergo an

ergodic–nonergodic transition, and jam. If the applied osmotic pres-

sure approaches the Laplace pressure of the droplets, then the jam-

med droplets also deform. Because solid friction and entanglements

cannot play a role, as they might with solid particulate or microgel

dispersions, the shear mechanical response of monodisperse emul-

sions can provide critical insight into the interplay of entropic, elec-

trostatic, and interfacial forces. Here, we introduce a model that can

be used to predict the plateau storage modulus and yield stress of a

uniform charge-stabilized emulsion accurately if the droplet radius,

interfacial tension, surface potential, Debye screening length, and

droplet volume fraction are known.
Detailed measurements of the shear rheology of disordered,
charge-stabilized, monodisperse, oil-in-water emulsions1 have
substantially improved the understanding of elasticity, yielding,
and ow of so matter systems. Although concentrated emul-
sions have been made and enjoyed over many centuries in
forms such as mayonnaise and lotion, emulsions fabricated
using typical mixers and blenders are typically polydisperse.
The variability in polydispersity prevented reliable quantitative
predictions of the elastic shear modulus of concentrated
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emulsions.2 Depletion-induced droplet size segregation, intro-
duced by Bibette,3 enabled the fractionation of signicant
quantities of uniform monodisperse emulsions. Subsequently,
Mason et al. showed that the elastic shear modulus Gp of non-
attractive, microsized emulsion droplets could be well repre-
sented over a wide range of droplet volume fractions by the
semi-empirical formula: Gp x 1.6feff(feff � fJ). When scaled by
the Laplace pressure, Gp, a linear property, and the shear stress
associated with yielding, sy, a non-linear rheological property,
each collapse onto separate master curves if the bare droplet
volume fraction f is converted into an effective volume fraction
feff ¼ f(1 + H/2R)3, where a f-dependent effective thickness H�
5–20 nm of the interfacial layer, is used to account for screened
electrostatic interactions between droplet interfaces.4,5 More-
over, in this work the important connection between the
measured fJ associated with the rapid onset of elasticity
towards the Laplace pressure scale and the volume fraction
associated with random close packing (RCP) of disordered
spheres, fJ x 0.64 was established. Overall corroboration of the
measured Gp(feff) came in the form of computer simulations by
Lacasse and Grest, which, to within the uncertainties in the
experiments and simulations, showed essentially the same
dependence as the measurements over a limited range of feff

near and above fJ.5 Importantly, Lacasse's simulations also
showed the rst example of non-affine motion (i.e. so spots) of
disordered jammed droplets even when the system has been
subjected only to very small shear strains.5 This leads to a
gradual increase in the modulus for feff above fJ, rather than a
step-jump that was predicted for perfect crystals of droplets.6

Later work by O'Hern et al. and others conrmed this important
nding using the terminology of jamming, and expanded upon
it.7–11 Recently we have shown that this jamming-scenario can
be applied to quantitatively model the linear and nonlinear
elastic properties of micron sized emulsion droplets.12

For emulsions of nanoscale droplets, known as nano-
emulsions, however, the radius R begins to approach the Debye
screening length, lD. In this limit, the electrostatic repulsion,
which leads to very large differences between feff and f, is not
This journal is © The Royal Society of Chemistry 2014
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properly taken into account by the ad-hoc H(f) intended for
near-microscale and larger droplets. Such charge-stabilized
nanoemulsions, aer having been repeatedly fractionated using
ultracentrifugation to provide uniform droplet sizes, can
become elastic solids at very low droplet volume fractions, even
as low as about f x 0.2.1,13 To explain the observation of
solidication at f far below the jamming of hard spheres,
Wilking and Mason introduced a simple model of ionically
stabilized, disordered, elastic nanoemulsions that successfully
connected the average repulsive interaction potential as a
function of distance between the droplets to Gp(f).13 While this
model enabled an accurate measurement of the Debye-screened
potential at nanoscopic lengths from macroscopic rheology,
their published work did not provide explicit expressions for Gp

as a function of R, f, lD, oil-water interfacial tension g, and
electrostatic surface potential j0 on the droplets.

Given the limitations of the currently available models of
emulsion rheology, it would be desirable to combine the
interaction potential associated with droplet jamming and
deformation developed by Lacasse et al. with a full treatment of
the screened charge repulsion between charged droplets. Such a
model could be used to predict the rheology of a wide range of
charge-stabilized emulsions having droplet sizes ranging from
the macroscale to the nanoscale. Here, we demonstrate that
such a quantitative comparison is feasible when taking into
account the coupling of the electrostatic potential to the energy
associated with the deformation of the oil droplets.

We derive our model for the elasticity of a dense, disordered,
monodisperse emulsion from scaling relations suggested in the
framework of the jamming scenario for so spheres having
sharp interfaces.8,14 At the jamming volume fraction fJ of so
frictionless spheres a marginally connected solid emerges.
Above the transition, the elastic shear modulus depends on the
specic pair potential of droplet interaction E(r), where r is the
center-to-center separation between droplets, as well as on the
connectivity of the stress-bearing network, characterized by the
excess number of bonds DZ ¼ Z � Zc �

ffiffi
3

p
with 3 ¼ f/fJ � 1.

The modulus Gp � k � DZ is found to be proportional to the
average bond strength or spring constant k ¼ v2E(r)/vr2 and can
then be written as:7–9,12

GpðfÞxa1
ffiffiffiffiffi
fJ

p kðfÞ
pR

� ffiffi
3

p
(1)

Similarly, for the yield stress one can write:

syðfÞxa2f
1:2
J

kðfÞ
pR

� 31:2 (2)

using a density scaling suggested by computer simulations.15,16

Estimates for the constants are a1x 0.25, a2x 0.05, as reported
recently.12,17 The jamming contribution due to the excess
number of bonds can be isolated when considering the yield
strain

gy ¼ sy/Gp ¼ (a2/a1)f
0.7
J � 30.7 x 0.15 � 30.7 (3)
This journal is © The Royal Society of Chemistry 2014
For the comparison to experiments we consider silicone oil-
in-water emulsions stabilized by 10 mM SDS for droplet sizes
ranging from 2R� 50–3000 nm. The surfactant concentration is
kept high enough to prevent droplet coalescence but also
sufficiently low so that micellar depletion attractions are
negligible. Oil droplets have been prepared by shear rupturing
of a crude emulsion and subsequent size fractionation using
depletion-induced creaming.3 The emulsions obtained are
uniform dR � 10–12% and we use the particle size as deter-
mined by light scattering or microscopy. Nanoscale droplet
sizes smaller than 2R � 200 nm have been obtained by using a
high-pressure microuidic ow device, and, aer ultracentrif-
ugal size-fractionation, the resulting emulsions typically show a
slightly higher polydispersity of roughly dR/R � 20%.18 Some
residual polydispersity is advantageous since droplet structures
remain disordered. The experimental average for the mean
hydrodynamic radius is obtained from dynamic light scattering
(DLS). Technical details about sample preparation and the
standard procedures employed for measuring the shear
modulus and yield stress have been published previously.1,4,13

However, we want to point out that rheological measurements
of the nanoemulsions are more challenging due to the small
volumes available. As a consequence we could only extract data
for samples with a sufficiently high elastic modulus and
moreover the accuracy of the measurements is slightly reduced.
The latter mainly affects the yield stress data as the line inter-
section method on the log–log plot of stress versus strain, which
denes the yield point, becomes less precise.4 Finally, in our
plots we present all available data but note that our model,
based on eqn (1) and (2) is valid only in the athermal limit. This
means our model description should be compared to data Gp

[ kBT/R
3 and sy [ kBT/(2R)

3. Entropic contributions will
dominate at lower densities and for lower values of Gp and
sy.12,16

Due to the presence of electrostatic repulsions jamming is
not conditioned by direct physical contact of the droplets. We
thus choose the critical interparticle distance for jamming rc to
be equal to the distance when the double layer repulsive inter-
action potential, u(h) exceeds c � kBT, where c is a constant
factor of order unity and h is the gap distance between the
droplet interfaces. From this point on, athermal energetic
effects will dominate. We note that this transition can be
understood in analogy to the uid–crystal transition of mono-
disperse charged spheres having a hard-core. In the latter case,
the crystal boundary has been established at u(hc) x kBT,19 as
long as kR$ 10 and u(h¼ 0)[ kBT, conditions that are fullled
for the droplets studied here. For our emulsions crystallization
however is suppressed due to droplet polydispersity and there-
fore the solid phases remain disordered. To this end, we
consider the electrostatic interaction energy u(h) of two charge
stabilized spherical emulsion droplets, each having diameter
2R. We dene the center-to-interface distance by x/2. In addition
to the Debye layer, we take into account an incompressible
interfacial layer, or black lm,20,21 of thickness dbf x 5 nm. The
center-to-center distance r of two interacting droplets is thus r¼
h + dbf + x. Note that the assumptions we make are exactly the
same as in the earlier work of Mason et al.,4,5 the only difference
Soft Matter, 2014, 10, 5040–5044 | 5041
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Fig. 1 Jamming volume fraction fc of charge stabilized emulsions as a
function of droplet size [ ]. Solid line: best fit of the theory for charged
droplets, eqn (5) with j0/Oc ¼ 308 mV and fJ ¼ 0.646 (for details see
text). Inset: estimate for the yield strain gy x sy/Gp for different droplet
radii R[nm] ¼ 28 [ ], 47 [ ], 73 [ ], 250 [ ], 530 [ ] plotted as a function
of the effective excess density parameter 3eff. The solid line shows the
predictions from eqn (3): gy x 0.15 � 30.7eff .
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being that here we attempt to model explicitly the coupling of
electrostatic repulsive and elastic interfacial interactions arising
from droplet deformation. For the concentration range
addressed here, f # 0.85, shape deformations are small and
droplets retain a nearly spherical shape. Therefore, since R [

lD and h � 2R, the electrostatic double-layer interaction
potential u(h) can be written as:19,22

u(h) ¼ Cee
�kh, (4)

where k�1 ¼ lD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r30kBT=ð2e2IÞ

p
is the Deybe length and

Ce ¼ 2pR3r30j0
2 is the contact potential energy. Here 30 is the

vacuum permittivity and 3r ¼ 80 is the static dielectric constant
of water. The Debye length lD ¼ 3.4 nm is calculated for an
electrolyte concentration of I ¼ 8.2 mM, equal to the critical
micelle concentration of SDS at room temperature.23 The only
adjustable parameters in our model are j0 and c. We assume
that j0 is independent of R and I. Jamming occurs at a volume
fraction fc when the value of the interaction potential exceeds
the thermal energy at u(hc) x c � kBT or hc x ln(Ce/(c kBT))/k
and thus we can write

fc ¼ fJ(2R + dbf)
3/(2R + dbf + hc(R))

3 (5)

Similar excluded-volume based arguments have been used in
the past to describe the generalized crystallization phase
diagram of monodisperse so spheres.24

Next we need to estimate the density dependence of the
excess number of bonds DZ(f) for the charge stabilized emul-
sion droplets. As discussed above the droplets jam at fc # fJ

which suggest an initial scaling with 3 � f/fc � 1. At higher
densities however the Debye layer is compressed and for f/ 1
the original scaling 3 / f/fJ � 1 will be recovered. To account
for this we interpolate between the two limiting cases with 3eff ¼
f/feff

c � 1 and feff
c ¼ fc + (fJ� fc)(f� fc)/(1� fc). We can check

the consistency of this approach by comparison to the experi-
mental values for the shear strain. As shown in Fig. 1 the yield
strain data for all droplet sizes, spanning more than an order of
magnitude in size, approximately collapse on a master curve
that is fairly well described by eqn (3). Here wemust stress again
the experimental difficulties to measure precise values of the
yield stress sy. As can be seen in Fig. 1 this leads to substantial
noise in the data for the yield strain gy x sy/Gp and thus
precludes a more quantitative comparison with the model
predictions.

To determine the bond strength k(f) we consider the full
droplet–droplet interaction potential E(r). Neglecting entropic
contributions, this potential can be represented as a sum of the
elastic energy associated with deformation of droplet interfaces
V(x) and an energy u(h) arising from the compression of the
Debye layer: E(r) ¼ V(x) + u(h). The interfacial deformation
contribution can be written as5

V(x) ¼ 0.72gR2[(2R/x)3 � 1]a (6)

with a x 2.32.4,5,11 The interfacial tension is g ¼ 9.8 mN m�1

(ref. 1 and 4) for poly-dimethylsiloxane silicone oil-water inter-
faces at a 10 mM sodium dodecyl sulfate (SDS) concentration,
5042 | Soft Matter, 2014, 10, 5040–5044
and the Laplace pressure scale of an undeformed droplet is
given by g/R.

In order to nd the equilibrium condition for a given r, we
minimize the total energy with respect to x (see also ref. 25). We
numerically solve (for xed r): vE/vx ¼ 0. This calculation
provides values for x and also for h ¼ r � (x + dbf). As two
droplets begin to approach, the so tail of the double-layer
potential is compressed while the core deforms little (x x 2R).
In this regime the bond strength k(f) ¼ Cek

2e�kh(f) scales
exponentially with h(f). For higher densities the oil droplet
itself will also be deformed and both contributions are coupled
and we cannot derive an analytical solution for k(f) any more.
We note that the average interdroplet distance r is set by the
droplet number density which in turn is related to the volume
fraction occupied by the oil droplets and thus f f r�3. When
the droplets are marginally in contact r¼ 2R + dbf, which in turn
sets11 f(r) x fJ((2R + dbf)/r)

3.
For the comparison of the model to the experimental data we

proceed as follows: we rst determine approximate values for j0

and c and then determine fc(R) by numerically extrapolating the
experimental values for the shear modulus Gp to zero using the
full expression eqn (1). This procedure is largely insensitive to
the exact choice of the guess parameters as long as c is taken of
order unity. The values we obtain for fc are shown in Fig. 1. We
then t the fc-data using the expression given in eqn (5) and
obtain j0=

ffiffi
c

p ¼ 308� 50 mV and fJ x 0.646 � 0.01. The latter
value for fJ is in good agreement with numerical studies of close
packing26 that predict fJ x 0.65 for polydispersities of the order
of 10–20%. The tted value for the surface potential j0

(modulus a factor
ffiffi
c

p
of order one) is higher compared to the

value reported by Calderon et al.22 for SDS stabilized octane
ferrouid emulsion droplets in the dilute limit (j0 � 50 mV).
This journal is © The Royal Society of Chemistry 2014
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Fig. 3 Shear modulus (a) and yield stress (b) of emulsions above the
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Using a constant value c x 3 � 1 we obtain excellent
agreement between eqn (1) and (2) and a comprehensive set of
experimental data for near-microscale and nanoscale ionic
emulsions, as shown in Fig. 2 and 3. Although some of the data
shown have been obtained from ref. 4 and 13, here, to extend
the range of comparison with our model, we also present new
data for the yield stress of nanoemulsions as a function of
droplet radius and f, the dependence of Gp on added [NaCl] and
f of nanoemulsions, and also Gp(f) of uniform microscale
droplets larger than previously reported. The new data sets were
obtained using exactly the same experimental procedures as the
published ones. Fig. 2 displays a linear plot of the concentration
dependent shear modulus which allows us to focus on the
compressed regime where droplet deformation is important,
whereas the logarithmic representation in Fig. 3 reveals more
clearly the onset of elasticity near the jamming transition. For
nanoemulsions (2R < 150 nm), rather than using the experi-
mental average for the mean hydrodynamic radius obtained
from dynamic light scattering (DLS), we adjust the droplet size
for a best t, albeit staying within the limits of the size uncer-
tainty�10%. Originally reported DLS values of the radii are also
given in parentheses. Moreover, in the inset of (Fig. 3a) we show
a data set for the R¼ 46(47) nm droplet size where an additional
10, 40 and 90 mM of electrolyte NaCl has been added1,27,28

resulting in a reduced Debye length of lD x 2.3, 1.4 and 1 nm.
At electrolyte concentrations of 40 mM and higher eqn (1)
qualitatively captures the trend but fails to describe the
Fig. 2 Elastic shear modulus normalized by the Laplace pressure
scale, Gp/(g/R), of microscale and nanoscale emulsions for different
droplet radii R[nm] ¼ 31(28) [ ], 46(47) [ ], 46(47) 10 mM NaCl [ ],
46(47) 40 mM NaCl [ ], 250 [ ], 1450 [ ]. The size of the smaller
droplets (2R < 150 nm) has been adjusted slightly for a best fit (sizes as
denoted in ref. 13 and 18 are given in parentheses). Two data sets were
taken for a nanoscale emulsion with NaCl added to reduce lD. Solid
lines: plots derived from eqn (1) with j0=

ffiffi
c

p ¼ 308 mV, c ¼ 3 and fJ ¼
0.646. Dotted line: R/lD/N. Inset: potential energy contributions for
droplets having size (diameter) 2R ¼ 500 nm. Solid line: total potential
energy E(r). Dashed line: electrostatic contribution. Dotted line:
contribution due to interfacial deformation of the oil droplet. The
dimensionless center-to-center distance is denoted by r/(2R + dbf).

onset of elasticity. Symbols: experimental data for nano- and micro-
scale emulsions with droplet radius R[nm ¼ 31(28) [ ], 46 (47) [ ], 67
(73) [ ], 250 [ ], 530 [ ]. Lines: predictions by eqn (1) and (2) with
j0=

ffiffi
c

p ¼ 308 mV, c ¼ 3 and fJ ¼ 0.646. The dashed lines indicate the
onset of entropic contributions towards the elastic properties of the
emulsions Gp � kBT/R

3 and sy � kBT/(2R)
3, with R(f) taken from Fig. 1.

The inset shows the data and theory for the R ¼ 46(47) nm sample for
different amounts of added NaCl (from left to right: cNaCl ¼ 0, 10, 40,
90 mM).

This journal is © The Royal Society of Chemistry 2014
experimental data quantitatively. In this limit, eqn (4), is
however expected to fail, in line with previous studies of
charged colloids29 and emulsion droplets.30

In conclusion, our results demonstrate excellent agreement
between experiments and the model. Our results highlight the
importance of explicitly taking into account nanoscopic inter-
facial properties when modeling micron, submicron, and
nanoscale colloids. Although the interfacial properties can be
system-dependent for different types of colloids, the assump-
tion of effectively hard interactions between colloids is an
oversimplication, not only here for ionic emulsions, but we
infer also for the vast majority of experimental systems.31

Moreover, we could show that the jamming scenario, originally
developed primarily for larger particles approaching the gran-
ular limit, is also highly relevant for submicron sized particles,
where, in principle, entropic contributions are expected to
become increasingly important. The latter are generally
believed to be driven by the cageing of particles by their peers.32

Caging however is dependent on accessible free volume which
is again controlled by particle–particle interactions. Thus, we
Soft Matter, 2014, 10, 5040–5044 | 5043
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anticipate that the model that we have presented could be
further improved by including such entropic contributions to
the shear modulus of disordered glassy emulsions for droplet
volume fractions near and below the jamming point.12,16,32 An
important, and very fascinating aspect, will be that in the
absence of a sharp interface both the entropically driven glass
transition scenario,32 due to cageing, and jamming, due to
direct interactions, are set by the thermal energy kBT. We
speculate that this interplay will lead to a continuous transition
across the glassy and jammed regime reminiscent of the unied
scenario discussed by Ikeda, Berthier and Sollich16 for the case
of so and highly deformable spheres with a sharp interface.

This work was supported by the Swiss National Science
Foundation under grant no. 132736 and 149867. JH acknowl-
edges funding from a Sciex Swiss Research Fellowship no.
10.030. T.G.M. and J.N.W. thank UCLA for support.
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